
1
Sensitiv ity : Internal & Restricted

1

Introduction

What is Snowflake

Built for the
cloud

SQL Data
Warehouse

Our Vision
Provide all users anytime, anywhere
insights so they can make actionable
decisions based on data

Our Solution
Next-generation data warehouse built
from the ground up for the cloud and for
today’s data and analytics

Delivered as a
service

Snowflake is a fully relational ANSI SQL Columnar data
warehouse build for the Cloud and Delivered as a
service. Snowflake delivers the performance,
concurrency, and simplicity needed to store and analyze
all of an organization’s data in one solution. Snowflake’s
Massively Parallel Processing clusters can Scale upto
Petabyte size

Complete Cloud Datawarehouse

What customers are doing with Snowflake

DATA MARTS
& EXTRACTS

Market research company
consolidated data marts
to reduce costs and data

silos

Gaming company
replaced Hadoop + SQL

database with Snowflake

STAGING

DATA LAKE

DATA
WAREHOUSE

Consumer retailer
modernizing DW by

replacing legacy appliance
with Snowflake

Mobile analytics company
shares live data with

clients

REPORTING, ANALYTICS
& APPLICATIONS

DATA SOURCES

• Storage separated from
compute

• Multiple compute clusters
(“virtual warehouses”)

• Virtual warehouses
concurrently access data
without contention

Snowflake architecture: Storage and compute

Compute
(virtual warehouses)

Storage
(cloud storage)

• Centralized management

• Metadata separate from storage
and compute

• Full transactional consistency
across entire system

Snowflake architecture: Service

Compute
(virtual warehouses)

Storage
(cloud storage)

Service

MetadataSecurityTransactionsManagementOptimization

Instant, live data sharing

• Architecture enabled

• Secure and integrated with RBAC

• Query and combine with existing data

Data
Consumers

Data
Providers

Sensitiv ity : Internal & Restricted

8

Complete SQL database

Core SQL

Simple DDL

Support for Information Schema

Data loading via bulk copy, INSERT

Full support for update DML: MERGE, UPDATE, DELETE

Multi-statement transactions

Analytic SQL

Windowing functions (LEAD, LAG, RANK, NTILE, …)

Extensibility

SQL UDFs

Javascript UDFs

Session Variables

SHOW LOAD HISTORY

INSERT INTO …

BEGIN …

COMMIT;

SELECT foo, bar, binky, LEAD(bar) OVER …

CREATE OR REPLACE FUNCTION

get_countries_for_user (id number)…

Sensitiv ity : Internal & Restricted

9

Native support for structured and semi-structured data

> SELECT … FROM …

Semi-structured data
(e.g. JSON, Avro, Parquet)

Structured data
(e.g. CSV, TSV, …)

Query optimization
• JSON paths in SQL queries
• Full database optimization for

queries on semi-structured data

Storage optimization
• Transparent discovery and storage optimization of

repeated elements

Sensitiv ity : Internal & Restricted

10

Dynamic caching for optimal query performance

Amazon S3

01010
01101
00011

Result Cache

• All query results stored for 24 hours unless
underlying data changes

• Identical queries are returned instantly without
requiring compute

Virtual Warehouse Cache

• Data loaded into warehouses is stored in local SSD
storage

• Cache entries are invalidated if underlying data changes

Cloud Services

Virtual
warehouses

Database
storage

Metadata Cache

• Improves compile times for queries against
commonly used tables

11
Sensitiv ity : Internal & Restricted

11

Data storage

Logical organization

Databases, schemas, tables

Physical storage

Files in Amazon S3

Block of data per file

Proprietary columnar, compressed format

Data never overwritten

Physical

Logical

Cloud storage (Amazon S3)

“Virtual warehouse”

▶︎MPP compute cluster

▶︎Resizable on the fly, up and down

▶︎Able to access data in any database

▶︎Transparently caches data accessed by queries

Data processing

Cloud services

Metadata

Connection handling

Planning &
optimization

Security Infrastructure

ODBC, JDBC, Web UI, native connectors

Cloud services

Load balancer

Distributed services for
database management
Connection management

Metadata storage & management

Infrastructure management

Query planning and optimization

Security managementData storage

Virtual Warehouses

• All database data stored in partitions

• True columnar storage within partitions

• Information about each partition stored in

metadata

• Pruning and filtering applied at partition

granularity

Snowflake data storage

M M M M M M T T T

day M M M M M M T T T

M M M M M M W W W

A B A D E F F F G

name B A B E D F Z Z Z

A A A F D E Y W Y

1 7 4 4 2 7 1 9 8

id 2 5 9 5 3 1 2 1 3

3 8 6 2 9 6 4 5 7

Partition 1 Partition 2 Partition 3

Explicit clustering optimization

M M M M M M T T T

day M M M M M M T T T

M M M M M M W W W

A F B A E A F F G

name E A D E B F Z Z Z

D A D A B D Y W Y

1 1 2 5 5 6 1 1 2

id 2 3 3 6 7 7 3 8 9

3 4 4 8 9 9 4 5 7

M M M M M M T T T

day M M M M M M T T T

M M M M M M W W W

A B A D E F F F G

name B A B E D F Z Z Z

A A A F D E Y W Y

1 7 4 4 2 7 1 9 8

id 2 5 9 5 3 1 2 1 3

3 8 6 2 9 6 4 5 7

Default clustering Explicit clustering

• By default, data clustered within partitions by arrival
order at load

• Optimal in cases where data arrives ordered by column
used in common query predicates

• Not optimal when columns in query predicates not
ordered at load e.g. all files scanned for query:

select name where day = ‘M’ and id = 2

• Table explicitly clustered on 1+ columns

• Automatic incremental clustering on DML

• Reduces number of partitions scanned:

select name where day = ‘M’ and id = 2

Instant data cloning operations
• Databases and tables

• Metadata-only operation

• No data copying required

Modified data stored as new
blocks
• Unmodified data stored only once

Zero-copy data cloning

…CLONE…

…CLONE…

Previous versions of data
automatically retained

Retention period selected by customer

Accessed via SQL
extensions

• AS OF for selection

• CLONE to recreate

• UNDROP recovers from accidental
deletion

> SELECT * FROM mytable AS OF T0

> SELECT * FROM mytable AS OF T1

New data Modified data

T
0

T
1

T
2

“Time travel” for data

18

Query execution

Amazon S3

01010
01101
00011

Query received by Snowflake

Sent via standard ODBC, JDBC, or web UI interfacesSQL
1

Planner and optimizer process query

Prune and filter, then use metadata to identify exact data to be
processed (or retrieved from result cache)

3

Virtual warehouse processing

Virtual warehouse scans only needed data from local SSD cache or
Amazon S3, processes, and returns to cloud services

4

1

Result set return

Final result processed, stored in cache for future use, and
returned to client

5

2

4

5

3

Result cache lookup

If the query matches an entry in the result cache then the
result is returned immediately

2

Data Loading & Unloading Techniques overview
Snowflake supports bulk import (i.e. loading) of data from one or more files into a table in Snowflake databases using
the COPY command. Snowflake also supports loading limited amounts of data through the web interface.

Snowflake supports the following file formats for data loading:

• Any flat, delimited plain text format (comma-separated values, tab-separated values, etc.).

• Semi-structured data in JSON, Avro, ORC, Parquet, or XML format (XML is currently supported as a preview feature).

As data is loaded, Snowflake converts the data into an optimized internal format for efficient storage, maintenance, and
retrieval.

Data Loading & Unloading Techniques overview

Data Loading & Unloading Techniques overview
Unloading Data
unloading data to a local file system is performed in
two, separate steps:

Step 1:
Use the COPY INTO <location> command to copy the
data from the Snowflake database table into one or
more files in a Snowflake stage. In you the command,
you specify the stage (named stage or table/user
stage) where the files are written.
Regardless of the stage you use, this step requires a
running, current virtual warehouse for the session.
The warehouse provides the compute resources to
write rows from the table.

Step 2:
Use the GET command to download the data files to
your local file system.

Parsing Data in Snowflake
Using the PARSE_JSON Function
This function parses text as a JSON document, producing a VARIANT value. If the input is NULL, the output will
also be NULL. If the input string is 'null', it is interpreted as a JSON null value, meaning the result is not a SQL
NULL, but a valid VARIANT value containing null (the difference is apparent when printing this VARIANT value).

Semi-structured Data Functions
These functions are used with semi-structured data (JSON, Avro, XML), typically stored in Snowflake in VARIANT,
OBJECT, or ARRAY columns.

Roles & User Prievelages
Role Hierarchy and Privilege Inheritance

The following diagram illustrates the hierarchy for the system-defined roles along with the recommended
structure for additional, user-defined custom roles:

Overview of Snowpipe
Snowpipe is Snowflake’s continuous data ingestion service. Snowpipe loads data within minutes after files are
added to a stage and submitted for ingestion.

With Snowpipe’s serverless compute model, Snowflake manages load capacity, ensuring optimal compute
resources to meet demand. In short, Snowpipe provides a “pipeline” for loading fresh data in micro-batches as
soon as it’s available.

Snowpipe enables loading data from files as soon as they’re available in a stage. This means you can load data
from files in micro-batches, making it available to users within minutes, rather than manually executing COPY
statements on a schedule to load larger batches.

Overview of Snowpipe
The following diagram shows the Snowpipe process
flow:

Snowpipe enables loading data from files as soon as
they’re available in a stage. This means you can load
data from files in microbatches, making it available to
users within minutes instead of manually executing
COPY statements on a schedule to load larger
batches.

➢ A pipe is a named, first-class Snowflake object
that contains a COPY statement used by the
Snowpipe REST service.

➢ The COPY statement identifies the source
location of the data files (i.e., a named stage)
and a target table.

➢ All data types are supported, including semi-
structured data types such as JSON and Avro

Change Tracking Using Table Streams
A stream object records data manipulation language
(DML) changes made to tables, including inserts, updates,
and deletes, as well as metadata about each change, so
that actions can be taken using the changed data. This
process is referred to as change data capture (CDC)

An individual table stream tracks the changes made to
rows in a source table

A table stream (also referred to as simply a “stream”)
makes a “change table” available of what changed, at the
row level, between two transactional points of time in a
table. This allows querying and consuming a sequence of
change records in a transactional fashion.

A stream stores the offset for the source table and returns
CDC records by leveraging the versioning history for the
source table. When the first stream for a table is created,
a pair of hidden columns are added to the source table
and begin storing change tracking metadata. These
columns consume a small amount of storage.

Stream Columns
A stream stores data in the same shape as the source table (i.e. the same column names and ordering) with the following
additional columns:

METADATA$ACTION:

Indicates the DML operation (INSERT, DELETE) recorded.

METADATA$ISUPDATE:

Indicates whether the operation was part of an UPDATE statement. Updates to rows in the source table are represented as
a pair of DELETE and INSERT records in the stream with a metadata column METADATA$ISUPDATE values set to TRUE.

Note that streams record the differences between two offsets. If a row is added and then updated in the current offset,
the delta change is a new row. The METADATA$ISUPDATE row records a FALSE value.

METADATA$ROW_ID:

Specifies the unique and immutable ID for the row, which can be used to track changes to specific rows over time.

Working with Temporary and Transient Tables
In addition to permanent tables, which are the default for creating tables, Snowflake supports defining tables as either
temporary or transient. These types of tables are especially useful for storing data that does not need to be
maintained for extended periods of time (i.e. transitory data).

Data Storage Usage for Temporary Tables
For the duration of the existence of a temporary table, the data stored in the table contributes to the overall storage
charges that Snowflake bills your account. To prevent any unexpected storage changes, particularly if you create large
temporary tables in sessions that you maintain for periods longer than 24 hours, Snowflake recommends explicitly
dropping these tables once they are no longer needed.

Transient Tables:
Snowflake supports creating transient tables that persist until explicitly dropped and are available to all users with the
appropriate privileges. Transient tables are similar to permanent tables with the key difference that they do not have a
Fail-safe period.

Data Storage Usage for Transient Tables
Similar to permanent tables, transient tables contribute to the overall storage charges that Snowflake bills your
account; however, because transient tables do not utilize Fail-safe, there are no Fail-safe costs (i.e. the costs associated
with maintaining the data required for Fail-safe disaster recovery).

Comparison of Table Types
The following table summarizes the differences between the three table types, particularly with regard to their
impact on Time Travel and Fail-safe:

Best Practices in Snowflake
Snowflake data warehouse charges for the Storage and Compute separately. Make it as a standard default to
suspend cluster idle for 5mins to save cost

Your account will be charged for all the data stored in schemas, tables, and databases created in your Snowflake
architecture. This means that you pay for the data storage irrespective of whether it is in Active, Time-travel or
Fail-safe State.

Snowflake automatically does the job of clustering on the tables, and this natural clustering process
of Snowflake is good enough for most cases and gives good performance even for big tables.

Clustering keys can be useful only for very large tables, re-clustering a table on Snowflake costs additional
credits.

The VARIANT data type has a 16 MB (compressed) size limit on the individual rows for Semi-Structured Data.
There are data size limitations of Parquet files, it is recommended to split parquet files that are greater than 3GB
in size into smaller files of 1GB or lesser for smooth loading. This will ensure that the loading does not timeout.
Preparing Delimited Text Files

Subtracting a date from another date has to be replaced with the DATEDIFF function in
Snowflake

Other Cloud Product Comparison

Sensitiv ity : Internal & Restricted

YO UR D ATA , N O L I M I T S

Thank You!

32

